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The consolidation or concentration of suspended particulate solids under the 
influence of gravitational forces is a problem of widespread practical and theoretical 
interest. The literature, which is scattered over several fields, contains most of the 
elements necessary for a complete understanding of gravity settling, but considerable 
controversy and confusion persists about their synthesis. Here we propose to 
construct a quantitative theory covering the full range of processes from transient 
settling of large, stable particles to the slow consolidation of flocculated suspensions 
of submicron particles. Conditions for the existence of shocks are identified and the 
basic equations describing the phenomena are solved numerically for several PBclet 
numbers. 

1. Introduction 
The operations of gravity settling and filtration of dispersions of micron and 

submicron particles in liquids are fundamental to  a wide variety of natural and 
industrial processes. Several classical papers provide considerable physical insight 
into the phenomena and the essential features of the mathematical formulation. Coe 
& Clevenger (1916) defined the basic physics for continuous thickeners, while Kynch 
(1952) formulated the mathematical treatment of batch settling, both focusing on 
concentration profiles in the settling phase. Meanwhile, Terzaghi (1925), concerned 
with soil mechanics, postulated a model for the consolidation of sediments. 

Since its original publication a good deal of controversy has gathered about the 
Kynch analysis. This is concerned with the selection of the physically correct results 
in cases with more than one formal solution of the mathematical problem. The 
question centres on conditions which must be satisfied at  a discontinuity in 
concentration, e.g. a t  the surface of the settled sediment or within the suspension 
between a region of varying concentration and the uniform region above it. Dixon 
(1977) pointed out that inertial effects, which are justifiably neglected for small 
particles in regions where the concentration varies continuously, can never be 
neglected across a true discontinuity. There the jump in momentum flux which 
accompanies the jump in concentration must be balanced by a corresponding jump 
in stress transmitted through the particle phase. Consequently, Dixon concluded 
that a shock can never separate two regions of free settling, making some of the 
solutions identified by Kynch inadmissible. But this conclusion leaves a whole range 
of systems and initial conditions for which, apparently, no consistent solution can be 
found. 

Another aspect of the theory, namely Kynch’s assumption that the settled 
sediment at the bottom of the vessel is incompressible, is clearly unrealistic for 
flocculated systems which are compacted under gravity as the depth of the sediment 
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increases. Though the stresses involved here are much smaller, the situation is 
analogous mathematically to the drained consolidation of soils, originally treated by 
Terzaghi (1925). Michaels & Bolger (1962) addressed flocculated suspensions and 
assumed that compaction takes place under the combined influence of gravity, fluid- 
particle drag forces, and stresses transmitted through the particle phase, with both 
the transmitted stress and the resistance to fluid flow in the sediment depending only 
on the solids concentration. Shirato et al. (1970) obtained numerical solutions for a 
similar model, and these were tested against experimental measurements by the 
above authors, Shin & Dick (1974), and Kos & Adrian (1974). Adorjan (1975) 
developed a theory of sediment compression, based on the equilibrium of 
compressive, viscous and gravitational forces. Buscall & White (1987) studied the 
compaction of structured sediments because of their common occurrence in chemical 
processes. Fitch (1983) treated the compression of sediments in steady state 
thickening, and Tiller (1981) attacked the difficult problem of coupling the Kynch 
theory for the free settling region with a solution for the compacting sediment. 
Problems arose, however, because of the nonlinearity of the governing equations, 
which generates multiple solutions and hence discontinuities. Controversy has 
persisted in the identification of the allowable discontinuities in the settling phase 
and the coupling of the solution for this phase with a compressible sediment. 

Our treatment starts with the complete equations of motion for the fluid-particle 
system, including all the forces active in both the settling and sediment phases, i.e. 
gravity, inertia, and viscous and interparticle stresses. Proper scaling of the 
equations then relates the appearance of large gradients in concentration to 
particular dimensionless groups, and permits the construction of ‘ inner solutions ’ in 
these regions of rapid variation, which can be matched to ‘outer solutions’ in the 
regions of slow variation to yield the jump conditions across the shocks without 
ad hoc assumptions. The analysis, therefore, predicts unambiguously concentration 
profiles from the bottom of the sediment to the clear fluid above the settling phase 
for both stable and flocculated suspensions. It is important to note that effects such 
as short-circuit,ing and channelling are not considered. 

2. The theory of hindered settling 
In 1916 Coe & Clevenger published a now classical account of the settling of 

metallurgical slimes. Their clear account of the settling process recognized that the 
colloidal particles quite rapidly aggregate into flocs, which subsequently separate 
from the liquid by gravity settling. For batch settling they identified four zones, an 
upper layer of clear liquid separated from the suspension by a sharp interface, a layer 
of flocculated suspension of uniform density settling a t  a uniform rate, a layer within 
which the density increases continuously with depth and, finally, a layer containing 
flocs in contact supported by forces transmitted through the contact points. In the 
upper layer they envisaged the flocs to move essentially under the influence of 
gravity and hydrodynamic drag forces only, though they recognized, from the 
peculiarly interlocking structure of flocculated pulp, that there are points of contact 
between the flocs even in these zones. Two types of settling behaviour were 
distinguished : type 1, in which the thickness of the third zone is very small, and type 
2, in which it is a significant fraction of the total depth of the suspension. Coe & 
Clevenger’s work provided a basis for the design of continuous thickeners from batch 
settling tests. 

Kynch (1952) was apparently the first to formulate a mathematical treatment of 
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the details of batch settling. He was concerned only with a suspension of identical 
particles moving under the influence of gravity and hydrodynamic drag forces in 
balance. Then for given particles and suspending fluid, the sedimentation velocity, 
or equivalently the downward flux of particles, is a function only of $, the volume 
fraction of solid material, and as the particle concentration increases the velocity 
decreases. Using the method of characteristics, Kynch found that, in certain 
circumstances, complete solutions could be found only if the possibility of 
discontinuities, or shocks, was admitted. 

2.1. Kynch theory 

The behaviour of the freely settling suspension is governed by the conservation 
equation for the particles, 

where U (  $) denotes the sedimentation velocity with x positive measuring downward 
from an origin at the top of the liquid (x = 0). Equation (1) may be written as 

which is a partial differential equation whose properties are determined by the form 
of the sedimentation curve $U($)  vs. $. 

The characteristics of ( 2 )  are contours of constant $ with slopes given by 

(3) 
- d r  - _ -  d[$U($)I 
dt d$ ’ 

so they are straight lines in the (x,t)-plane. Clear fluid above the sedimenting 
suspension is separated from the suspension by a sharp interface, while below a layer 
of particles rest in contact with each other and with the bottom of the vessel. This 
layer is regarded as incompressible, with its bulk density fixed a t  4,. In  these 
circumstances the velocities of the interfaces separating the suspension from the clear 
fluid above and the settled material below are determined by continuity. These 
solutions highlight the importance of the concentration dependence of the volume 

Despite the apparent simplicity of the case treated by Kynch, a variety of 
behaviour is possible depending on the shape of the flux curve and the initial spatial 
distribution of the particles. For the usual shape of this curve, plotted in figure 1, 
Rhee, Aris & Amundson (1986) illustrate the method of characteristics by considering 
different uniform initial concentrations and identify three essentially different types 
of behaviour. In the first a zone of constant concentration falls with constant speed 
to meet with the rising sediment. In  the second a zone of continuously varying 
concentration separates the settled material below from a uniform suspension above ; 
consequently the speed of descent of this zone decreases before settling is complete. 
The third resembles the second, except that a discontinuity in concentration 
develops between the region of varying concentration and the uniform region above. 
The distinction between the first type of behaviour and the other two is analogous 
to  Coe & Clevenger’s distinction between two types of settling. Other cases can be 
found in the literature (Wallis 1963; McRoberts & Nixon 1976). 

The solution is complete and single-valued when the characteristics springing from 

flux $ l 7 ( $ ) .  
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FIGURE 1 .  Schematic illustration of a flux curve with associated discontinuities. 

the t = 0 axis fill the entire (x, t)-plane above the settled sediment without 
intersecting. Often, however, characteristics intersect, indicating an unacceptable 
multiplicity of solutions. This is resolved by introducing a discontinuity separating 
regions in which the solution varies continuously. 

A satisfactory theory of settling suspensions with compressible sediments, 
including the identification of regions of rapidly varying concentration forming 
‘shocks’, must recognize the transmission of stresses between the particles. In a 
settling region where the concentration of particles varies smoothly these would have 
negligible influence. However, they generate a resultant force which depends on the 
concentration gradient and is therefore non-negligible in regions of very rapidly 
varying concentration, even when the concentration itself is not very large. At higher 
concentrations they become larger and balance the gravitational forces, thereby 
supporting the sediment. They therefore play an important role in the mechanical 
structure of ‘shocks’, making it possible to model in detail the mechanics of the 
transition between the settling zone and the sediment surface, thus eliminating the 
need for ad hoe assumptions regarding the characteristics of the Kynch equation 
there. 

2.2.  The momentum equation 

In  order to introduce the forces omitted in arriving a t  the flux expression used in the 
continuity equation ( l ) ,  we must consider momentum balances for the liquid-solid 
system, including both inertia and stresses transmitted through the sediment, as 
advocated by Dixon (1977). 

Definitive forms for the momentum balances, valid over the whole range of 
particle sizes, concentrations and densities, are not available. All existing attempts 
to formulate these involve ad hoe assumptions, some of which are controversial. 
Fortunately, for the present purpose, the controversial aspects of such equations are 
not important. The results of importance (inequalities (24) and (25)  below and 
equation (28) satisfied by the ‘inner solution’ within a shock) depend only on the 
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presence of terms representing inertia, stresses transmitted between particles, 
gravity, and drag forces exerted between the fluid and the particle assembly, 
together with a comparison of the orders of magnitude of these terms. These results 
are best developed from the momentum balances, and we choose those postulated by 
Anderson & Jackson (1967), but we emphasize that our conclusions would not be 
changed significantly if these were replaced by other variants on these equations 
which have been suggested. 

In  terms of local mean variables, then, the one-dimensional momentum balance for 
the fluid is assumed to take the form 

aP 
Pf(1 -q5)  [$++I = - ( 1  -q5)  --nf+ ax ( 1  -q5)pf g.  

The corresponding momentum equation for the solids is 

with 

aP ag [t ax ax P# -+w- = -#-+nf+$pg--,  

(4) 

Here u and w are the x-components of velocity for the suspending fluid and the 
particles, respectively; p and pr are the densities of the solid and the fluid, 
respectively ; p is the pressure for the fluid ; g is the stress transmitted by interactions 
between solid particles ; and nf accounts for the fluid-particle interaction force arising 
from the relative motion. The first term in ( 6 )  represents a drag force exerted by the 
fluid on the particles and the second term a virtual mass force proportional to the 
mass of fluid displaced by a particle and the relative acceleration. Since the drag force 
must become proportional to (u-w) a t  sufficiently low Reynolds number, the 
function P depends only on q5 when I U - W ~  is small; the virtual mass coefficient, C ,  
whose value would be $ for an isolated spherical particle, is expected to depend on the 
volume fraction q5. There is no knowledge of the way in which the virtual mass 
coefficient varies with concentration, nor is there a unique form for the rate of change 
of the relative velocity. An acceptable definition of the relative acceleration is given 
by Murray (1965) 

Any two independent linear combinations of (4) and (5) will serve equally well. In  
particular, we might take (4) together with an equation obtained by multiplying (4) 
by q5/(l-q5) and subtracting from (5). Substituting from ( 6 )  and (7) then yields the 
following equation 

Then, with C set equal to zero, the first term on the left-hand side represents the rate 
of change of momentum of the solids, while the second describes the action on the 
particles of pressure gradients associated with fluid accelerations. The first term on 
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the right-hand side is the drag force due to relative motion of the fluid and the 
particles, the second is the difference between gravity and buoyancy forces, and the 
third represents the force due to a gradient in the stress u transmitted directly 
between the particles. In  uniform sedimentation only the first two terms on the right- 
hand side of (8) remain. Since the total flux must vanish, the fluid velocity u is related 
to v by 

$v 
1-4’ 

= -~ 

and the drag coefficient p($) to the sedimentation velocity U ( $ )  by 

(9) 

This can be used to eliminate u and p($) from (8). Furthermore, assuming that the 
stress transmitted between particles depends only on $, we can write u = a($), and 
hence 

”=($)??, ax 

Equation (11) together with (S),  (9), (10) and the continuity equation then 
constitute a theory of sedimentation in concentrated suspensions. 

3. Conditions at a discontinuity 
We now ask whether the above equations admit solutions in which the variables 

change very rapidly over an interval of x small with respect to the initial depth of 
the suspension. If so, these correspond to ‘shocks’ on the scale of the suspension as 
a whole, and the ‘inner’ solutions describe the structure of these shocks. These 
solutions then determine the nature of the jumps in the variables which may occur 
across the shock. 

Before examining the inner solutions and their bearing on the existence of shocks 
it is valuable to re-write (8) in dimensionless terms. For this purpose, the natural 
lengthscale is L, the initial depth of the suspension, and the natural velocity scale is 
vt, the terminal settling velocity of an isolated particle in an infinite body of fluid. 
Accordingly we define dimensionless variables as 

so that (8) combined with (9) and (10) becomes 

This expression contains two dimensionless parameters, pf/p, $/gL, and two 
dimensionless functions of $, (da/d$)/pgL and C($). The first parameter is simply 
the density ratio, while the second represents the ratio of a lengthscale v t l g ,  
associated with the inertial terms, to the geometric lengthscale L. The first function 
represents the ratio of a lengthscale (da/d$)/pg, associated with stresses transmitted 
between the particles, to the geometric lengthscale L. 
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The possibility of a shock, that is, an 0(1) change in $ over a distance very small 
compared with L, exists only if v,2/gL and (dc/d$)/pgL, are small compared with 
unity. Then the structure of the shock can be obtained from pseudo-steady solutions 
of (12) and the associated continuity equation for the particles, in the rest frame of 
the shock. This will provide ‘inner solutions’, valid in the limit as the shock thickness 
shrinks to zero, which must match ‘outer solutions’ in adjacent regions where the 
concentration varies relatively smoothly (Rhee et al. 1986; Davis & Russel 1988). 
This matching process should determine criteria for the existence of shocks. The most 
obvious inner regions, between the clear fluid and the settling region or the settling 
zone and the sediment, appear on the scale of the suspension as jumps in 
concentration a t  the surface of the settling region, or a t  the surface of the rising 
sediment. But shock-like behaviour may also be possible within the settling zone 
depending on the curvature of the flux curve $U($)  and the initial condition. 

Outside shock layers we assume that stress gradients and inertial terms are small 
enough to be negligible; then (12) simply balances drag forces and the buoyant 
weight, and the particles descend with the sedimentation velocity U(+).  Thus, outer 
solutions satisfy the Kynch equation (2). 

3.1. Shocks within the suspension region 
Let us consider the possibility of a shock separating two regions of slowly varying $, 
namely above and qh2 below, with corresponding dimensionless sedimentation 
velocities U, = U*($,) and U2 = U*($,), respectively. (From now on, the asterisks 
will be omitted for simplicity and all variables will be assumed to be dimensionless.) 
Viewing this shock from a frame of reference which moves with it, with a 
dimensionless velocity V (positive upward), we then can apply the pseudo-steady 
state hypothesis. In  the frame of the shock, the dimensionless continuity condition 
for the particles reduces to 

and for the liquid to 
$(a+V) = $l(Ul+V) = $2(U2+V)r (13) 

where 
of the 

( l - + ) ( u + V  = (1-$1)(u1+V) = (1-$2)(u2+VL (14) 

u and v are velocities relative to  the rest frame and $ is the volume fraction 
solid, a t  any point within the shock layer. Similarly, (12) becomes 

Combining (13) and (14) yields 
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av - v + v a $  
ax $75 a x ’  
au u+v a$ 
ax ( i - $ ) a x .  

- - 

- - ~- - 

Then (15), (16), (20) and (21) combine to give a single equation which determines the 
variation in particle concentration within the shock 

representing the contribution of the inertial effects, is always positive. 
The right-hand side of (23) is a product of factors whose magnitudes are of order 

unity. Thus the length of the interval of x, over which a significant change in $ 
occurs, is proportional to the factor in brackets on the left-hand side. If the 
magnitude of this is 4 1, then 4 may change significantly over a distance which is 
very small compared with the total depth of the suspension. Then recognizable 
shocks may occur with a ‘thickness ’ which depends on the parameters (da/d$)/pg 
and $/g. If 

a shock may exist with thickness of the order of (da/d$)/pg determined by the stress 
gradient terms alone (since h($)  is of order unity), while inertial effects are negligible, 
even within the shock. On the other hand. if 

a shock again may exist, but now its thickness is of the order of $/g determined by 
inertial effects, while interparticle forces may be neglected, even within the shock. If 
either of the parameters is not 4 1, then recognizable shocks cannot occur. 

These observations alone resolve the difficulties associated with inertia raised by 
Dixon (1977). While it is true, as Uixon points out, that inertial terms can never be 
neglected in an ideal shock where conditions change discontinuously across a 
geometric surface, real shocks have a finite, though small, thickness. When the 
inequalities (24) are satisfied (as for sedimentation of small particles) the thickness 
of the shock is determined by interparticle forces, and terms associated with 
acceleration over this lengthscale are negligible in comparison. In  principle the 
opposite situation, characterized by the inequalities ( 2 5 ) ,  can also arise, but with 
such large inertial effects it is doubtful that the system can be described adequately 
by the present model, which assigns a unique particle velocity to each position. 

The variation of $ within the shock layer can, in principle, be found by integrating 
(22). However the information needed to interpolate between two outer solutions can 
be obtained without doing this explicitly, simply by examining the geometry of the 
sedimentation curve. The values of $75 outside the shock, and adjacent to it, 
correspond to two points on the sedimentation curve; for example, points 1 and 2, 
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or points 3 and 4 on figure 1. From (17)  the velocity of a shock separating these two 
conditions, supposing that one may exist, equals minus the slope of the chord 
joining the points. For points 1 and 2, as drawn, the chord lies entirely below the 
sedimentation curve, while for points 3 and 4 it lies entirely above. 

Now, for any value of $ along the chord, the bracketed quantity on the right-hand 
side of (22) represents the vertical distance between the chord and the sedimentation 
curve, counted positive if the chord lies below the curve. Thus, in the common 
situation corresponding to inequalities (24), equation (22) shows that d$/dx will be 
positive when the chord lies below the sedimentation curve and negative when it lies 
above. This is indicated by the arrows drawn on the chords in figure 1. When the 
chord lies below the curve, it follows that $ increases on moving down through the 
shock, and we have a compression shock. Conversely, when the chord lies above the 
curve, we have a rarefaction shock. If the chord intersects the curve at some 
intermediate point, a shock between conditions represented by the end points is not 
possible, since any interval of q5 containing the intermediate intersection point is seen 
from (22) to correspond to an unbounded interval of x. These conditions are 
consistent with those of Lax (1973) and the interparticle stress provides a physical 
basis for the selection of shocks. The same geometric interpretation can also be 
applied to shocks which occur at the surface of the rising sediment. 

3.2. T h e  surface of the rising sediment 
Kynch's theory accounts for neither inertial effects nor stress gradients, leading to 
discontinuities a t  the surface of the rising sediment. We now examine the case where 
inertial forces can be neglected as in (24). Under these circumstances, let us look at 
a layer near the surface of the rising sediment, within which $ = q5rn. We consider the 
case in which this layer is thin, so that i t  can be regarded as a shock and the pseudo- 
steady state approximation can be invoked. Then (15) reduces to 

Viewed from the frame of reference of the sediment surface rising with speed 
(dL/dt), the condition of continuity of flux a t  the surface is 

dL dL 
$rnx = $["';it]. 

Eliminating w between (26) and (27) leads to a differential equation 

whose solution must be matched to the outer solutions corresponding to the 
descending suspension and the rising sediment. 

Since $ is larger for the rising sediment than for the suspension, matching is 
possible only if d$/dx 2 0 throughout the inner solution, which in turn requires 
that 

for all values of $ between $m and that corresponding to  the descending suspension. 
This situation is represented in figure 1,  where $a corresponds to the suspension. 

15-2 



446 F.  M .  Auzerais, R. Jackson and W .  B. Russel 

From (27), dL/dt is the slope of the chord joining the point ( a ) ,  representing the 
suspension, to the point ($,,,, 0), representing the sediment. Furthermore 

is just the vertical separation between this chord and the sedimentation curve, 
counted positive when the chord lies below the curve, so the above condition for 
matching requires that this chord lies below the sedimentation curve over its whole 
length. 

Now consider a line through ($m,O)  which is tangent to the sedimentation curve 
a t  point ( b )  and intersects it a t  a second point ( a ) .  For suspensions with volume 
fractions of solid between zero and $a (e.g. $J, or between $b and $m (e.g. $&, the 
above condition is satisfied by the chord joining the point representing the 
suspension to (q5m, 0), so these suspensions can deposit directly on the rising sediment 
surface. For suspension volume fractions in the interval [$a ,  $ b ] ,  however, the chord 
joining the point representing the suspension to (&, 0) does not lie entirely below the 
sediment curve, and matching is not possible. Direct deposition of suspensions of this 
class on the sediment surface is, therefore, impossible. 

The problem now reduces to finding an outer solution satisfying the Kynch 
equation (2), which is consistent with the initial state of the suspension and 
yields values of $ a t  the surface of the sediment which lie in the intervals [0, $a] or 
[q5b,$m]. When the forces associated with the interparticle stress dominate, as in 
(24), it  is possible to resolve all ambiguities in constructing solutions of the Kynch 
type for the settling region, and match them to solutions for the sediment, using 
only intermediate shocks satisfying the above conditions in addition to the shock 
a t  the sediment surface. 

4. Complete solution for sedimentation of an initially uniform suspension 
Having explored the variety of possible shocks and identified the physical 

characteristics of particles and suspending fluid for which inertial effects can be 
neglected, we can construct the complete solution of the sedimentation problem for 
an initially uniform suspension of any volume fraction together with appropriate 
combinations of Kynch theory and shock conditions. The different cases, which are 
all identified in the existing literature (Rhee et al. 1986), appear for a typical flux 
curve which presents one point of inflexion ( i ) ,  a t  $ = q5i, and where the points ( a )  and 
( b )  are the same as in figure 1. 

A direct jump is possible a t  the sediment surface from the value 
do to the value q5m, so only one stage of settling occurs. The rate of fall of the 
descending suspension is constant and equal to U(q50). This situation is shown in 
figure 1 where the initial condition is represented by the point (a).  

< q5m. Once again, no intermediate shock is necessary and direct 
deposition on the rising sediment is possible. This initial condition is represented by 
the point (p) in figure 1 .  

< $b .  Direct contact between the suspension at the initial concentration 
and the sediment surface is not possible, nor can any acceptable shock propagate to 
regions which can contact the rising sediment. Therefore we must construct a 
solution in which $ changes continuously from to q5*, through a fan of 
characteristics from the origin. At point (b) ,  the characteristics are parallel to the 

( a )  0 < $,, < 

( b )  q5b < 

( c )  q5i < 
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0 

X* 

1 .o 
0 t* a2 

FIGURE 2. (a) Schematic of sedimentation with < q5, < q5*, showing the associated 
discontinuities. ( b )  Contours of constant density for < q5,, < q5,. 

surface of the rising sediment and ( b )  is acceptable as a point representing material 
in contact with the sediment surface. The fan cannot extend to $b < $ < $m since 
then the line representing the sediment surface is steeper than the characteristics. 
For this type of situation, the descent of the top of the suspension slows down before 
all particles have joined the sediment. This is referred to as a falling rate period. 

( d )  $a < $o < $$. Once again, direct contact with the sediment surface is not 
possible nor can a compression shock be constructed leading to a condition such that 
$ b  < $ < $m, from which the jump to the sediment can be made. However, we can 
construct a compression shock to a point such that $i < $ < $b and then complete 
the solution as in ( c ) .  In order to have the flux balanced, this shock must be incident 
tangentially on the sedimentation curve a t  a point ( t )  between $i and $b ,  as shown 
in figure 2. If $,, represents the initial value with a compression shock from $o to 
dt ,  then a fan of characteristics determines $ in the interval [$ t ,$b]  while at #b the 
material can contact the rising sediment surface (figure 2). Once again there is a 
falling rate period. This case corresponds to  what Been & Sills (1981) have observed 
and called a transition zone between dispersion and sediment. 
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5. The numerical scheme 
When inequalities (24) or (25) are not satisfied there are no recognizable shocks, 

and the above method of solving the sedimentation problem fails. However, direct 
numerical solution of the equations of motion is still available, and we shall use it to 
illustrate the nature of the solution in general, and show the convergence to the 
above results for appropriate parameter values. In  particular, we shall assume that 
v,2/gL + (du/d$)/pgL, but not that (du/d$)/pgL < 1.  Then the dimensionless 
momentum equation (12) reduces to 

while the dimensionless continuity equation becomes 

Together with the no-flux conditions a t  the top and bottom of the sedimentation 
column, these constitute a complete description of the process. Numerical solution of 
the problem makes no a priori distinction between clear liquid, suspension and 
sediment, and the interfaces between these regions, though no longer sharp, should 
appear in the solutions as recognizable features of the concentration profile 
throughout the column. Then, by repeating the computations for successively 
decreasing values of (du/d$)/pgL, it should be possible to see convergence towards 
the different types of solution shown in figure 2. Thus, the computations will serve 
the dual purpose of confirming the validity of the reasoning leading to the solutions 
of figure 2, and showing how the actual situation deviates from these ideal solutions 
as the magnitude of interparticle forces increases. 

To proceed further requires specific forms for the functions U ( $ )  and u($). The 
next section discusses appropriate forms for hard spheres, to exemplify stable 
dispersions, and for flocculated networks. 

6. Constitutive relations 
Hard spheres provide a useful and realizable model for stable colloidal dispersions 

for which simple, but robust constitutive relations for U and v can be constructed 
from information in the literature. For example, Batchelor (1972) derived the dilute 
limit for the sedimentation velocity as 

U ( $ )  = 1 -6.55$+0($2) (32) 

for low-Reynolds-number motion. Experimental results at higher concentrations 
reported by Buscall et aE. (1982) for aqueous polystyrene latices a t  M NaCl and 
deKruif, Jansen & Vrij (1987) for silica spheres in cyclohexane roughly follow the 
empirical equation 

U ( $ )  = (1 -$F, (33) 

with 5.8 < p < 6.6. Hence we describe the sedimentation velocity of hard spheres a t  
finite volume fractions through (33) with p = 6.55 to conform with both the dilute 
limit and values measured for $ > 0.4. 

For stable dispersions of small particles the transmitted stress v($) is equivalent 
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to the osmotic pressure 17. The origin of this relationship can be illustrated by 
considering a dispersion with a monotonically varying volume fraction, e.g. 
decreasing upward. In the absence of an external field, such a spatially varying 
concentration represents a non-equilibrium state. Consequently, both particles and 
fluid molecules experience forces, proportional to the gradients in their respective 
chemical potentials (Batchelor 1976). But the osmotic pressure of a solute, or a 
colloidal particle, is directly proportional to the chemical potential of the solvent. 
Hence the thermodynamic force, or equivalently the stress, can be written for 
spheres of radius a as 

with Z ( 4 )  known as the compressibility factor and h4" the thermal energy. In the 
dilute limit Z ( $ )  = 1+4$+0(4') for hard spheres. Near random close packing 
molecular dynamics simulations indicate that Z ( 4 )  diverges as 

with $m = 0.64 (Woodcock 1981). Equation (35) suffices for the semi-quantitative 
purposes of this work. 

For flocculated suspensions, the physical situation is more complex. I n  very dilute 
systems flocculation increases the sedimentation rate since finite flocs behave as 
larger, discrete sedimenting units. At higher concentrations of interest here, 
however, interactions produce a gelation phenomenon in which individual flocs join 
together into a volume-filling network (Michaels & Bolger 1962). Thus the 
hydrodynamic problem involves flow through a network of spherical particles as 
described by Brinkman (1947). His model of the porous medium as a single sphere 
embedded in an effective medium determined the permeability as 

With this the argument following (8) establishes 

The artificial zero at  4 = $ lies above random close packing and is not significant. 
The stress g within a flocculated network cannot exceed the compressive yield 

stress. Otherwise the network collapses to a higher volume fraction capable of 
bearing the load. Though no theory exists, the empirical expression 

with 2 < n < 5 ,  $m = 0.64 and go = constant mimics the experimental data available 
for the compressive yield stress of several flocculated dispersions (Buscall & White 
1987). This pseudo-static form for CT implies that the rate of consolidation is limited 
by the resistance to moving fluid through the network and not by the resistance to 
moving particles relative to each other. 
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FIQURE 3. Concentration profiles at various times for q50 = 0.1 and Pe = 85 for stable 
suspension. 

7. Numerical results 
For the numerical treatment, standard techniques for the solution of partial 

differential equations may be used, and an implicit method was chosen for stability 
reasons. The integration itself is done with GEARB, developed by Hindmarsh 
(1975), in double precision. This package is especially suited to stiff problems. We 
used, for the solution of this initial-value problem, the classical three-point second- 
order finite difference approximations, a relative error of and a spatial step size 
of 5 x GEARB adjusts the temporal step size to achieve this specific error. 

7.1. The hard sphere model 
The equation that governs the sedimentation behaviour is found by combining (31), 
(33), (34) and (35), so for 0 < x < 1 

must be satisfied. 

bottom, i.e. 
The boundary conditions for a closed container are no flux a t  both the top and the 

where 

is the ratio of gravitational potential to the magnitude of the osmotic pressure. It is 
therefore large when transmitted stresses are small, and vice versa. 

The initial condition is chosen such that $, < $o < $i, which corresponds to the 
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FIGURE 4. Concentration profiles at  various times for $,, = 0.1 and Pe = 8500 for stable 
suspension. The dotted lines correspond to Pe-, 00 (Kynch case). 
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FIQURE 5. Concentration profiles at various times for 4,, = 0.1 and Pe = 1 .7  x lo5 for stable 
suspension, with Pe + rn (Kynch case) represented by the dotted lines. 

most complex case a t  Pe = a, where an intermediate shock develops, separated by 
a region of continuously varying volume fraction from a second shock a t  the surface 
of the sediment. For the flux curve described previously, an appropriate initial value 
is $o = 0.1. In  order to study the influence of the interparticle forces and show that 
these are responsible for the mechanics of settling in the transition zones, we vary the 
PBclet number from 85 to 1.7 x lo5. Larger values require a very long integration 
time. 
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FIGURE 6. Settling behaviour showing lines of constant density for Pe = 85 for stable 
suspension. 

Figures 3 and 4 demonstrate the smooth variation in volume fraction for various 
times. At Pe = 85 (figure 3), q5 varies smoothly from top to bottom and remains 
rather smaller a t  the bottom than q5m, indicating the influence of significant 
interparticle forces throughout the column. As Pe increases to  8500 (figure 4) the 
interface in contact with the supernatant fluid becomes sharper, and a uniform zone 
of constant q5 now clearly appears. The bottom sediment builds up with a much 
sharper surface, but does not yet reach maximum packing and a large concentration 
gradient separating the falling rate period from the uniform suspension appears. 
Also, the top of the suspension and the intermediate jump separating the uniform 
suspension from the falling rate period closely resemble those predicted by the 
Kynch solution (dotted curves on figure 4). The final case treated, Pe = 1.7 x lo5 
(figure 5) corresponds well to Pe = co (Kynch case) shown by the dotted lines. The 
transition from the uniform suspension a t  q5 = 0.1 to the falling rate region with 
q5 = 0.4 now resembles a shock, and the steep parts of the curves leading to q5 = 0.64 
approximate the jump at the sediment surface in the Rynch solution. The fact that  
this last is not a discontinuity comes from the form of a(#). If we had chosen a 
function which remained zero near q5 = &, then increased rapidly toward co a t  &, 
the Kynch solution would be simulated very accurately. Nonetheless, these results 
clearly verify the validity of the Kynch solution as a limiting case for Pe 00, and 
show how this limit is approached. 

Figures 6 and 7 represent curves of constant q5 in the (x,t)-plane for the Pdclet 
numbers studied previously. We note that the line of constant density q5 = 0.05 at  
the upper surface always follows the Kynch case represented by the characteristic of 
slope -U(q5,,). But the time for equilibrium to be reached is much greater than 
predicted by Kynch, even a t  very large PQclet. The evolution of the lines of constant 
density of the rising sediment indicates, a t  low PQclet number, quite a different 
behaviour. We see that the zone of constant concentration remains only for a short 
time. As Pe + co the thickness of the intermediate region decreases to approach a 
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FICXJRE 7. Settling behaviour showing lines of constant density for Pe = 8500 for stable 
suspension. Pe+ co (Kynch case) in dashed lines. 

true discontinuity and the concentration of the sediment approaches close packing, 
as the solutions collapse to the Kynch case represented by the dashed lines in 
figure 7. For flocculated suspensions, the physical situation is more complex. 

7.2. The jlocculated model 
In this case three regions can be distinguished within the sedimenting dispersion. As 
with stable dispersions a clear fluid layer forms above a uniform dispersion a t  the 
initial volume fraction. At the interface x = xl( t )  the stress within the dispersion is 
zero but below that it increases linearly with depth. The point x = x, ( f )  a t  which the 
stress reaches the compressive yield value marks the top of the sediment. From there 
to the bottom the stress retains the local yield value while the volume fraction 
increases monotonically with depth. Thus the problem is to calculate the positions of 
the boundaries xl( t )  and x2(t)  and @(x, t )  for x2(t)  < x < 1. In  the uniform region, 
9 = @o and the stress varies as 

Then 

and all particles within xl ( t )  < x < x2( t )  fall with the same velocity, 

(43) 

In  the region xz( t )  < x < 1, the governing equation for the consolidating sediment 
is 
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subject to the zero flux condition at the bottom, x = 1. Continuity of the volume 
fraction and flux across x = x 2 ( t )  requires + ( x 2 )  = +o and 

Since + is a function of x and t but constant at x = x 2 ( t ) ,  x 2 ( t )  can be obtained upon 
integration of 

Thus the coupled equations (44)-(47) determine xl(t), x 2 ( t )  and + ( x ,  t )  for 0 < x < 1 .  
This moving-boundary problem is most conveniently solved by transforming the 

variable integration domain x 2 ( t )  < x < 1 into the fixed one 0 < ( < 1 with 

Transformation of (44), (45) and (47) produces a system of three equations, 

which must be solved simultaneously with the initial conditions x1 = 0, x2 = 1,  
$ = +o a t  t = 0 and the associated boundary conditions 

a t  ( = 0, 

a t ( =  1. 

The nonlinearity of the system of equations makes a general solution extremely 
difficult if not impossible to obtain. Furthermore the initial conditions present a 
singularity a t  t = 0. To overcome this problem and start the numerical calculation, 
we derive a short time solution of the form 

+(& t )  = $0 + + 1 ( L  t ) ,  (54) 

U(+) = u0+q5,u;+ ..., (55) 

with + 1  <. $o.  Taylor series expansions of U(4) and u(+) about + = +o 
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where the primes and double primes indicate the first and second derivatives with 
respect to and the suffix 0 denotes the value of the associated functions at  
+ = lead to the linearized forms of (49) and (51), 

and 

Similar linearization of the boundary conditions, equations (52) and (53), gives 

1 -x2 4 4 0 )  at 6 = 0, 341 
a6 x2-x1 g;, 

- 

and 

(59) 

For very short times, x2-x1 - 1, permitting integration of (50) to give (Buscall & 
White 1987) 

(61) 

To integrate (58), we evaluate az+l/i3tz by noting that 

which can be rewritten in terms of 6 as 

(3),5-1 = - (63) 

The right-hand side of (63) can be computed from (59) and (60) given a functional 
form for Taylor expansion about the point 5 = 0, 

suffices. Then substituting (64) into (60) and regrouping terms determines the linear 
form of (58) as 

- .  (65) dx > = A -  
dt > ,  A l  

_ I  

Integration implicitly yields x2(t) through 
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FIGURE 8. Concentration profiles at various time for flocculated dispersion for n = 4, q50 = 0.1 
and P e  = 0.05. 

where A ,  B, D,  E are constants defined as 

(,,( $o Uo - B D ) r  
A2D 

E =  

The general procedure for integrating numerically (49), (50) and (51), with the 
boundary conditions (52) and (53) ,  is to choose a small, but finite time t and use 
equations (6l) ,  (66) and (64) to provide the initial conditions for xl, x 2 ,  and an initial 
profile of concentration 

In  order to study the influence of the interparticle force, we vary the PBclet 
number, 

, (71)  (P - P f )  gL Pe = 
C O  

which represents the ratio of gravity to the magnitude of the stress. Increasing Pe, 
for example by centrifuging to increase the effective value of g, should produce 
greater compaction and therefore a higher volume fraction of solids in the sediment. 

Figure 8 shows concentration profiles at successively increasing values of the time, 
for $o = 0.1, Pe = 0.05 and n = 4. At this low PBclet number $ remains considerably 
smaller a t  the bottom than $m, indicating significant interparticle forces throughout 
the column. However the upper surface of the suspension is perfectly sharp and 
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FIGURE 9. Concentration profiles at various time for flocculated dispersion for n = 4, $,, = 0.1 
and Pe = 50. 
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FIGURE 10. Settling behaviour showing lines of constant density for Pe = 0.05 for flocculated 
dispersion. 

descends a t  an initially constant rate. When the network becomes strong enough to 
oppose further compression, a uniform zone, which has not yielded, remains. The 
contrast between this and a stable suspension at Pe = 85, which shows a diffuse 
upper boundary and no discontinuity in d$/dx, arises from the form of the stress 
(equation (38)) and the elastic limit of the suspension. As Pe increases to 50 (figure 
9), the sediment builds up with a much sharper surface, but does not yet reach 



458 F .  M .  Auxerais, R. Jackson and W .  B. Russel 

X* 

0.6 - 

0.8 - 
,,.,._,....... .. ."" 

0.58 

I I 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
t* 

0 

FIGURE 11. Settling behaviour showing lines of constant density for Pe = 50 for flocculated 
dispersion. Pe + cc (Kynch case) in dashed lines. 

maximum packing, indicating persistent interparticle forces transmitted throughout 
the suspension. 

Figures 10 and 11 represent curves of constant q5 in the (x, t)-plane for the PBclet 
numbers studied previously. I n  both cases the system reaches equilibrium a t  t d 2.5, 
much faster than in the stable case. The evolution of the lines of constant density of 
the rising sediment indicates quite different behaviour for each PBclet number. 
However, the rate of fall of the upper surface follows (44) with x2( t ) -x l ( t )  - 1, 
represented by the dashed lines in figure 11,  as predicted by Buscall & White 
(1987). 

Only qualitative results can be generated a t  this point since the general validity 
of this model for flocculated materials remains to be established. However, in this 
concentrated regime, flocculated suspensions settle much more slowly than do stable 
suspensions and increasing Pe never produces total consolidation but only a new 
equilibrium state with a finite zone of uniform volume fraction. 

8. Discussion 
In the above treatment, we have developed a phenomenological theory of the 

sedimentation and consolidation of concentrated suspensions. The results of 
importance depend on the existence of momentum balances containing inertia, drag 
forces, and interparticle stresses, but not on the 'controversial ' details of these 
equations which differ among the various attempts to formulate them. 

The detailed analysis focused on the effects of the interparticle stresses for particles 
sufficiently small for inertia to be negligible. The interparticle stresses were assumed 
to dominate the viscous stresses associated with the consolidation process, i.e. the 
lubrication stresses generated by the relative motion of the particles on the 
microscale. The conditions for which this is true can be assessed by comparing the 
form expected for the viscous stress, ,us V - v with ,us a bulk viscosity of the suspension, 
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with the interparticle stress u. Since the bulk viscosity should scale on the fluid 
viscosity and the continuity equation dictates that 

the ratio has magnitude 

Although Pe $ 1, the ratio of particle size to the macroscopic dimension is quite 
small. The assumption should be valid as long as Pe(a /L)2  4 1 provided the bulk 
viscosity and the interparticle stress vary in a similar manner with volume 
fraction. 

For a colloidally stable suspension near equilibrium a simple derivation establishes 
that the osmotic pressure supplies the interparticle stress u (Batchelor 1976; Davis 
& Russel 1988). Hence, the stress is a thermodynamic property of the dispersion and 
consolidation is a reversible process. Hard spheres provide a convenient model 
system because theory and molecular dynamics simulations have yielded accurate 
expressions for the osmotic pressure from infinite dilution to random close packing 
for a disordered fluid phase. The sedimentation process perturbs the suspension from 
equilibrium by an amount proportional to the microscopic or particle Peklet number, 
Pep = 4xa4(p-p,)g/3W. Thus the theory remains valid for Pe(a /L)  4 1, a more 
stringent requirement than (73). 

For flocculated suspensions our formulation of the problem assumes a space filling 
network of particles with a volume-fraction-dependent elastic limit, or compressive 
yield stress. Exceeding the yield point initiates a plastic deformation which 
consolidates the network irreversibly into a more concentrated state. The stress is 
represented by a simple expression (38), consistent with the limited experimental 
data available. The theory does not apply for weak flocculation, since thermal 
fluctuations could induce a time-dependent consolidation, or when rapid con- 
solidation ruptures the network into discrete flocs. 

In  the framework of our study shocks appear under well-defined conditions as 
apparent discontinuities in volume fraction, i.e. thin regions of large gradients. The 
conditions derived for the existence of shocks provide a physical basis for the 
‘entropy condition’ of Lax. An estimate of the thickness of the shock separating 
regions with volume fraction $1 and $2 can be obtained from (22) (omitting the term 
in vth($)/gL since we have not pursued the case where inertia dominates). As 
1x1 + co the solution approaches $1 or $2 asymptotically. a$/ax approaches zero 
a t  both limits and its magnitude is largest a t  some intermediate point. A simple 
measure of the dimensionless thickness (x, - xl) of the shock is then given by 

(74) 

Since the quantity in brackets on the right-hand side of (22) represents the vertical 
separation y between the flux curve and the chord joining points on this curve with 
abscissas $1 and $2,  the above may be written 
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I n  particular if the flux curve is smooth and @z-q511 is small, lylmax - l$2-$llz and 
the variation of da/d# within the interval (cj51r q52) can be neglected. Thus, for ‘weak ’ 
shocks (75) gives 

This increases without bound as 142-q511+0, so ‘weak’ shocks become thick, the 
steady state hypothesis breaks down, and their treatment as discontinuities becomes 
inappropriate. However, this situation is easily handled by numerical solution of the 
full equations. The physical thickness L(x, - zl) of recognizable shocks depends on 
the Darameter 

for a stable suspension. Thus the thickness is O(L/Pe)  and shocks effectively 
disappear for E’e < O(1). 

The forms chosen for U ( 4 )  and a(#) serve to  illustrate the qualitative features of 
the phenomena. For colloidally stable suspensions numerical solutions of the 
transient sedimentation equations for various P6clet numbers remove any un- 
certainty about the validity of the results of 94. I n  the limit as Pe + co the solutions 
collapse to those obtained analytically provided all chords representing dis- 
continuities lie below the flux curve. The characteristics of the discontinuities reflect 
the form of the flux curve and the nature of the interparticle stresses. Within the 
sediment the numerical results approach the Bynch solution slowly since the osmotic 
pressure becomes large as q 5 + $ m .  For flocculated systems with Pe - O(1) the 
interparticle stresses remain important throughout the network and a discontinuity 
appears only at  the top interface between the suspension and clear fluid. Increasing 
the PBclet number increases the concentration of the sediment a t  the bottom of the 
vessel and would eventually generate similar discontinuities, but a t  values of the 
P4clet number well beyond those considered. The differences between the volume 
fraction profiles of the stable and flocculated cases a t  finite Pdclet numbers show the 
importance of the nature of the interparticle stresses. 

9. Conclusion 
The object of this study has been to develop a theory to predict the transient 

settling of stable and flocculated dispersions. Kynch’s theory of sedimentation 
represents a limiting case of a more general treatment which includes inertial effects 
and interparticle forces and accounts for the presence of a compaction zone a t  the 
bottom. The examination of the relative sizes of the different dimensionless 
parameters determines when stresses dominate the effects of inertia. Under these 
conditions, when particles pass through a shock, they are decelerated by those 
stresses as they enter a zone of higher concentration. A graphical interpretation 
shows that retarding forces associated with the stress transmitted between particles 
determine which shocks are permissible. Numerical computations demonstrate that, 
even as the P6clet number goes to infinity, these stresses are still important across 
the shocks, but the solutions do reproduce the Kynch discontinuities in the limit. 

Incorporation of a compressive stress allows us to describe the consolidation of 
flocculated networks. Flocculated dispersions behave differently from the stable 
systems and respond in a way determined by the stress which can be supported by 
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the network. For a stable system the sediment attains maximum packing, regardless 
of the size of the body force causing settling. For a flocculated system, on the other 
hand, the asymptotic packing density depends on the magnitude of this body force, 
and increases as the force increases. But we should note that the mutability and the 
complexity of the floe structure can affect and greatly complicate the constitutive 
relations for the stress (T and the uniform settling velocity U .  Because flocculated 
networks do not show a unique type of behaviour, more data should be generated to 
test those relationships in detail. 
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